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Abstract

The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian

NMR spin systems motivates this overview of uniform general-2n ½AX �2n spin evolution, which represents an extensive addendum to

Corio�s earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The jD0ðUÞjðð�SUð2ÞÞð2nÞÞjSIj values
in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we

discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property

inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is

invaluable in many DR-based NMR problems. Various ½AX �n model spin systems, including the ½AX �3 bis odd-odd parity spin

system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of jSI j ¼ 15 (implied

by Corio�s jD0jðð�SUð2ÞÞ2nÞ approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an

isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683].

The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over

dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are

characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper S2n

network-based view of spin-alone space developed in Balasubramanian�s work [J. Chem. Phys., 78 (1983) 6358] is especially im-

portant, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR

applications where a sporadic, still higher, 2n-fold regular uniform spin ensemble exhibits a topological FG duality to some known

modest jSI jð2i<2nÞ
cardinality—in principle providing for the (sparce) existence of other jSI jð2nÞ DR-based values.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The subspectral analytic properties of isochronous

multiple spin systems, AA0XX0, (AA0A
00
), AA0A

00
XX0X

00
,

(e.g.), represents a longstanding classic area of NMR

endeavour [1–3]. Certain theoretical physics concepts,

including (e.g.) democratic recoupling [3] and aspects of
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group invariants [4] exert a significant impact on our

recent understanding of the corresponding intra cluster-

J dominated ½A�n; ½AX �n spin systems, though to date the

dependance of uniform multispin system NMR proper-

ties on such considerations has not been as widely re-

cognised by the NMR community as it deserves. With

the extensive recent development of cluster-based

nanoscience, it is timely to re-examine the impact of
theoretical physics concepts on a range of ½AX �n type

(automorphic) NMR spin systems [5–7], whether under
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even (2n), or odd (2n+1) indices. Naturally such studies
are equally important in the realm of uniform sub-rank

(dual) tensorial sets, and their completeness [8,9] as (e.g.)

operatorbases of the Liouville equation. To appreciate

in a systematic way the origin of the properties exhibited

by these uniform sub-rank spin systems, one needs to

consider their scalar invariants [1,4], parity [2], dual

projective [5–11] and/or recoupling [10,12] properties.

The nature of many-body interactions [3,8,13] implicit in
democratic recoupling makes a significant impact on our

specific understanding of both NMR evolution and re-

laxation processes [12,14,15] once uniform sub-rank

multispin cluster systems are considered. For reasons

based on their specific inherent quantum physics interest

(and their previous neglect by the NMR community), we

focus on uniform multispin systems described in terms of

(multipole) tensorial formalisms [12]. The latter involve
the use of (operator)bases involving uniform subrank-

based auxiliary labels [9,12,14]. To illustrate the general

NMR significance of the work reported here and to

describe the various formalisms involved, brief infor-

mative overviews of various pertinent NMR subtopics

are given in the initial paragraphs. Naturally these in-

clude the following topics: the role of time-reversal in-

variance in group invariants [4], the nature of both
democratic recoupling and tensorial properties in NMR,

and (as a comment in Section 2) several ideas associated

with quasiparticle carrier space [9] properties of Liou-

ville space; essentially in the context of democratic

recoupling [3]. A brief introduction to multipole density-

operator methods [10–12] in various post-1976 formal-

isms pertinent to NMR spin dynamics is included in

Section 3 for completeness. Compared to shiftbase or
product base approaches, formalisms utilising tensorial

basis sets [10–12,15] allow strong physical interpreta-

tions to be associated with both (dual) mapping actions.

They allow important roles for tensorial rank/auxiliary

labelling involving invariants. These are all too fre-

quently absent from discussions which draw on other

NMR formalisms.

The primary motivation for the present study is to
gain insight into the structure of uniform non-Abelian

NMR multispin systems and their augmented ½AX �2n
bicluster forms. For reasons of tensorial completeness,

this is considered in terms of their group invariants and

jSI jð2nÞ cardinalities (or else via their external augmented

jSI jð2n:�Þ values), where the former are typical group

measures of Lie algebra. These invariants, as analogues

of graph-invariants [10c] of Abelian symmetries, form
an important part of the structure of dual tensors and

their completeness, a topic touched on given in Sections

2 and 3. Subsequently, Sections 4 and 5 introduce sev-

eral distinct aspects of post-Weyl TRI-based jSI jð2nÞ
modelling. Subsequently, Section 6 focuses on the dual

projective properties. After initially considering the na-

ture of invariance sets in state and Liouville spaces, the
SIs as group measures are discussed in the context of
dual quasiparticle mapping. To retain some brevity in

the subsequent Secs., we set out here the full range of

nmemonics utilised in the text, namely: DR, TRI, and

SIs are utilised, respectively, for democratic recoupling,

time-reversal invariance, and scalar invariants; likewise,

the mnemonics FG, SR, and SA are used to denote finite

groups, and the algebraic properties, simply-reducibility

and self-associacy—in a tableaux sense. For dual tenso-

rial sets and Lie algebraic group measures, we introduce

the terms DTS and L-GM. In addition, we utilise tilded

symbols for Liouvillian analogues of Hilbert space

properties. Finally, the v½k�1nSn characters (or �chars� in
mathematics texts) in Eqs. (10)–(14) will be slightly ab-

breviated for typographic convenience. This is possible

here without introducing any ambiguity in the notation

for the Eqs., since we merely omit the 1n subscript labels
from expressions involving v½k�1n characters, or �char�
symbols.
2. Initial context

In an otherwise informative discourse [1] on the

properties of various multiple spin systems, Corio ap-
pears to overlook the existence of more general uniform

spin systems, as well as the inherent limitations present in

2nP 8-fold purely linear-recoupling aspects of Weyl�s
original treatment [4] of time-reversal invariance (TRI)

present in certain Abelian spin systems. The use of

projective dual group properties (cf. [1]) has the ad-

vantage of being equally pertinent to Abelian spin

problems and to non-Abelian ½A�2n uniform multiple spin
systems, i.e., for 2nP 8; 10. It also avoids the restrictive

recoupling conditions inherent in [1]. Accordingly, this

allows for the use of more general treatments of uniform

½AX �2n systems, such as those examined in this report.

Whilst considering the structure imparted to the H
Hamiltonian representation by zeroth-order scalar

coupling, the 1998 work of Corio [1] gives no recogni-

tion to the theoretical significance [5] of extended ðI � IÞ
scalar spin interactions as analogues of Sn-defined group

actions over permutational networks [6]. The earlier

Corio orthogonal group approach to the structure [7] of

H, is presented in analytic spectral invariants (1960s)

terms. However, the idea of group actions and Sn net-

works allows one a deeper insight into the special

(abstract) nature of automorphic NMR spin symmetry

[5–7] arising from dominant intra-cluster couplings—cf.
to that of analogous isochronous multispin system. The

quantal physics of the former also necessitate some

discussion of their relationship to boson (superboson)

quasiparticle dual group mapping [8,9]. On utilising

the Liouville operator
^̂
L � ½Ĥ; �� (specifically over

fjkqviig � fT kqðvÞg integer rank tensorial operator

bases [10–12]) to describe evolution processes, certain
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important quantum physics questions arise. These are a
specific consequence of the central role played by system

scalar invariants (SIs) in dual projective mapping. An

earlier (1993) work of ours [9] shows precisely how such

dual projective mappings over a carrier space arise in the

general context of superboson quasiparticle (QP) alge-

bra. This more recent formalism (see Eq. (2) below)

derives naturally from simple reducibility (SR) consid-

erations, and is itself a (Liouvillian dual group) aug-
mentation [9] of earlier Hilbert space ideas, originally

due to Biedenharn and Louck [8].

For general, higher-indexed uniform NMR systems,

the role of these group invariants is clearly defined by

various SUð2Þ �Sn dual group actions over an abstract

spin space, with ½A�n ensemble dual projections being

discussed conveniently in the terms of quasiparticle su-

perbosons acting over (quantal) carrier spaces [8,9], or
alternatively in conventional terms, either as of Dkð~UÞ
SOð3Þ representations, or else via dual group as ~Xc:i class

(finite group (FG)) actions pertinent to invariance over

Liouville space. In terms of (simple) SO(3) representa-

tions, these Liouvillian properties are defined by:

Dkð~UÞ � DjðUÞjkqviiDj yðUÞ; ð1aÞ
where the k label here defines the integer rank(s) of

Liouville space T kqðvÞ tensors—in contrast to the half-

integer increment-based js of Hilbert space. The auxil-

iary label(s) here, v ¼ ðk1::knÞf::g, span a full set of

uniform sub-rank kis and other related (recoupling) la-

bels. Naturally under the SUð2Þ �Sn # G dual group(s),

the FG projection properties of Liouville space involve
the class (augmented) invariance properties ~vc:ið¼ tr ~Xc:iÞ
realised over fi ¼ E; :; :; ðC2ÞgðSn # GÞ, set of an earlier

joint work [11] via the analogous FG expression:

~Xc:i � Xc:ijkqviiX y
c:i; ð1bÞ

for (respectively) ~Xc:i;Xc:i as ith FG class operators of

Liouville (or state) space algebras, on the basis of in-

herent (dual group) tensorial properties. Naturally over

the augmented space, the corresponding ~P~l projections

[11,12] draw on standard methods of traditional finite

group theory, so that the Liouvillian representation(s)

(irrep(s)) simply become: ~CðSn # GÞ ¼
P

~l
~P~lðSn # GÞ.

The use of density operator methods in NMR, NQR,

and related techniques has had a long history, dating

from the 1950s. In the form of Liouville (super)opera-

tors acting over an appropriate f:g-defined fjkqviig ¼
fT kq

f:gðv ¼ ðk1::knÞÞg tensorial sets of NMR operator

bases, these methods has been known since the mid

1970s. Detailed overviews of these NMR (NQR) mul-

tipole formalisms and their applications may be found in
[10–12]. Specific details of the formalism and its phase

properties vary somewhat according to one�s choice of

tensorial bases for the density operator [10,12], as well as

on the possible inclusion, as here, of dual (automorphic)

spin symmetry [5,6,9–11]. The uniform sub-rank bases of
more general ½A�2n>4 uniform spin ensembles require one
to draw on some additional (including democratic re-

coupling) concepts in order to treat such systems in

terms of suitable density operator formalisms. Central

to any discussion of democratic recoupled (DR), uni-

form sub-rank multispin systems is the specialised na-

ture of group invariants, and their use in place of either

the existing graph invariants [10c] or f ~Kij; ::g (Jucys)

labels within v. Applications in NMR of earlier aspects
of recoupling have been extensively treated in (e.g.) the

Sanctuary and Halstead review [12]. Irrespective of

whether one is considering uniform fT jmðj1::jnÞg state

space, or (as here) fT kqðk1::knÞg Liouvillian bases, the

group invariants constitute essential properties of these

non-Abelian spin systems. They clearly complement the

role of contrasting graph schematics in analytic spin

dynamics involving Abelian systems.
It is important to note here that neither graph sche-

matics or group invariants (alias SI-cardinalities) of the

contrasting recoupling schemes are subject to any sort of

augmentation on simply mapping analogous systems

from Hilbert space onto Liouville space. In this respect

recoupling and DR-based properties are distinct from

the invariance properties discussed in Section 6.1 below.

This much is clear from earlier work [12], in which only
the j1; ::; fKijg; k1; ::; f ~Kijg formal labels change on

mapping from state to Liouville space. Indeed, this lack

of (internal) spin-spatial-based augmentation contrasts

strongly with the changes to the basis dimensionality

and to the various fvc:iðSn # GÞg; ðf~vgÞ invariance

properties over automorphic group algebras implicit in

Eq. (1b). Amongst the most important properties at-

tributed to uniform ki Liouville spaces, which is central
to any discussion of DR, is that of mathematical simple

reducibility (SR) over a superboson carrier space. It is

essential to the completeness of all dual algebras. Real-

ising this SR property in any specific case naturally re-

quires some detailed knowledge of the dual group

invariants, which define the underlying DR-based uni-

form multispin system. The dual group-based SI-cardi-

nality contributes to a precise definition of the
corresponding dual tensorial sets (DTS) and their

completeness, as defined below in terms of group ac-

tions. The SIs as v auxiliaries demonstrate this requisite

property via:

fDkð~UÞ � ~C½~k�ðPÞðvÞj~U 2 SUð2Þ; v;P 2 Sng; ð2aÞ

both of which derive from quasiparticle superboson

mapping [9] over distinct ~Hv carrier subspaces. This view

of the SR structure of DTS is based on acknowledging

the explicit role of the group invariant auxiliary label v, as
a part of ~U�P dual actions over a carrier space. These
group actions are expressed by the formal mapping:

~U�P : ~H ! ~H; for ~H �
X
v

~Hv; ð2bÞ
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which, as part of a mathematical formalism [9], usually
precedes the f::j::g set expression of Eq. (2a). Clearly,

the difference between Liouville and state space dual

mapping actions arises from v invariant being an explicit

map parameter only in the former case, as set out in Eq.

(2a). In a distinct contrast to simple jjma >! jkqvii
interspatial mappings, any consideration of uniform

multispin ½A�n, mono- to bipartite ½AX �n system maps

draws on the Lie algebraic aspects of group invariants
over isomorphic product algebras. Since the form of

these maps define the properties of bipartite clusters

representing the ½AX �n enhanced uniform NMR spin

ensembles, they constitute a strong motivation for this

analytic work on SIs. Hence, it is important to recognise

now that these SIs or group invariants are actually

group measures in a Lie-algebraic sense.

The central defining role played by forms of DR re-
coupling in many-body theory of mathematical physics

[3,13] underlies much of the Sn (topological-based)

modelling employed in this work. From the above

comments, the reader will appreciate that some under-

standing of quasiparticle quantum formalisms (treated

within the physics of many-body problems [3,13]) is

central to any cogent study of DR within uniform mul-

tiple spin systems. An excellent recent overview (with
wide literature citation) of many-body interactions by

Atiyah & Sutcliffe [13] is especially helpful in placing the

topic in a wider context. In addition to its survey of the

field, it points out the specific algebraic contrasts be-

tween Abelian and non-Abelian systems, distinctions

which also apply to the analogous automorphic NMR

spin symmetries [5] discussed here. Clearly, the structure

of H for uniform multiple spin NMR (and hence its
related hhkqvj ^̂Ljk0q0v0ii � hh::j½Ĥ; j::ii�� (evolutionary)

matrix representation) is characterised generally by high

levels of degeneracy. For higher uniform higher (2n)
systems, the use of either linear recoupling-based

�SUð2Þ-based Weyl–Corio techniques [1,4], or alterna-

tive forms of graphical recoupling or graph invariants,

are seen as totally inappropriate. In principle, all

graphical, �SUð2Þ-based approaches are strictly limited
to Abelian non-degenerate spin systems—a point all too

frequently overlooked in the literature [1,14]. Hence the

pertinence of our use of the full dual projective group-

theoretic approach here in treating DR-based auto-

morphic non-Abelian (uniform subrank ki) multispin

ensemble NMR problems and their associated

properties.

In our subsequent discussion of recoupling applied to
time-reversal phenomena, we also note the existence

of distinct limitations to the use of Weyl�s linear-

chain recoupling view of TRI invariance (e.g.) over

ðI � IÞi0 ðI � IÞj0 ðI � IÞk0 :: bracket structure, when they are

applied for example to (uniform) higher (2n)-indexed
ensemble problems. In Weyl�s original TRI concept [4],

only the single ðI � IÞi0 ðI � IÞj0 , or similar i0k0; j0k0, -pairwise
operator-bracket permutations contribute to the time-
reversal properties. In contrast, none of the various

possible higher ðð::Þð::ÞÞi0 vs ðð::Þð::ÞÞj0 block permuta-

tions formally contribute to Weyl�s formulation of TRI.

In the present DR treatment, this Weyl criterion is ex-

plicitly retained, so as to exclude higher bracketted ex-

change terms. In the detailed presentation (Section 3.

below), this leads to the inclusion of certain sub-alge-

braic-based (quadra (or higher)partite-based) terms,
whose essential purpose is to ensure the exclusion of all

such higher-block permutational contributions.

There is also an urgent need to recognise the value of

various general Sn approaches to the role of DR in spin

physics. In subsequent Secs. various algorithmic and

symbolic computational views are applied to the treat-

ment of uniform multiple spins (sub)sets of non-Abelian

½A�n, or ½AX �n NMR systems. Prior to examining the
specific focus of the work, a novel (Laudau-like) ap-

proach to the SI cardinality of rather general uniform

sub-rank NMR spin systems, it is first necessary to

outline a few aspects of NMR formalisms, in order to

stress the practical motivation for the study. The central

conceptual idea, the inclusion of DR into theory of

group invariants, necessarily draws on the roles of dual

group mapping and of polyhedral combinatorics (as a
lattice point set-based technique) in defining the sets of

SIs. The latter are simply one further aspect of dual

projective formalisms. Prior to examining these ques-

tions, a clear understanding of the general nature of

DR-based TRI contributions arising from the various

indexed ðI � IÞ operator pairs [4] is needed.
3. Multipole density operator Liouville formalisms

The use of a normalised density-operator (NMR)

technique over tensorial operatorbasis sets, with its re-
tention of the property of rotational invariance, is a

well-established approach to NMR [8,10–12]. Here the

qðtÞ is expanded via (in general)
P

i /iðtÞT ðiÞ, or else in

terms of
P

kqv /
k
qðvÞðtÞT kqðvÞ multipole sum with /k

q as

coefficients. Subsequently, this formalism is applied to

spin evolution (development) under various specific

conditions, or to relaxation via the Liouville (differen-

tial) Eq., with:

i�hqdðtÞ � ^̂
Lq� i

^̂
Rq; ð3Þ

where the v, a labels associated with Liouville and Hil-

bert space bases (referred to above) are analogous

auxiliary forms spanning the remaining labels and in-
variants. Thus, the uniform three spin ensemble bases

(e.g.) are, respectively:

T jmðaÞ � jjmai � jjm fKijg; v ¼ ðj1j2j3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{

i; ð4aÞ
for a state space tensor, and
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T kqðvÞ � jkqvii � jkq f~Kijg;~v ¼ ðk1k2k3Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ii; ð4bÞ

for the Liouville space analogue, as described below.

Here the
^̂
L;

^̂
R terms in Eq. (3) are, respectively, the

Liouville and relaxation superoperators [12]. The aux-
iliary braced segments (commonly labelled a; v) of Eq.
(4) contain (respectively) the recoupling and system

scalar invariant terms appropriate to each type of basis

and the v;~v specific invariants—only for this single spe-

cific case are the actual embracketted ji; ki sets (used

elsewhere for the field of sub-ranks) notationally iden-

tical to the actual invariants. The nature of the recou-

pling schemes, as graph or system invariants, are
common (except for the specific rank notation) to both

state and Liouville spaces and are not themselves subject

to (� product) augmentation, on introducing mappings

from state space to the related fjkqviig space. In addi-

tion, a close correspondence exists between established

quantum mechanics and the more recent differential Eq.

approach of Eqs. (3–7) to NMR, NQR (or NAR) spin

problems. A number of aspects of spin dynamics in
terms of differential eqs. (in a rotating frame) have been

discussed elsewhere [10–12]. A more restricted Liouvil-

lian in which relaxation processes are ignored is fre-

quently adopted, so that the Schrodinger viewpoint then

yields:

i�h/̂
dðtÞ ¼ ^̂

L /ð0Þ; ð5Þ

with
^̂
L being either time-dependent or, as in certain

evolution processes, time-independent. In either case,
^̂
L ¼ ½Ĥ; �� acts over the full fjkqviig basis set. The

corresponding /k
qðvÞðtÞ polarisations are simply the

(Liouvillian) expectation values of analogous tensorial

components of the operator basis:

hhT kqyðvÞii � trfqðtÞT k
q ðvÞg � trfT kqðvÞyqðtÞg; ð6Þ

where for example the /0ð11Þ;/1
1ð11Þ polarisations of

the tractable AX , and ½A�2 problems correspond respec-

tively to the dot and cross-product terms. Explicit Hil-

bert space matrix representations of the (simpler) T kqðvÞs
themselves may be readily evaluated, as in Eqs. (32)–(34)

of [11a]. The latter gives a detailed discussion of evolu-

tion for the various polarisations inherent in the ½A�2
spin system. For such time-independent

^̂
L problems,

formal linear algebraic solutions exist such as the al-

ternative general form:

/̂ðtÞ ¼ expð�i
^̂
L=�hÞ/ð0Þ; ð7aÞ

where the vector of polarisations are taken over rank k,
component q and suitable auxiliary v labellings. For

^̂
L

time-independent case, diagonalisation over the associ-

ated augmented spin space operatorbasis set yields in-

teresting quantal physics. This may be seen most

generally in terms of the kk eigenvalues and Tf::g row

(column) transformational eigenvectors, which are gen-
erated in the course of numerical diagonalisation. It
follows that a physical formal solution [12] exists in

terms of /̂lðvÞðtÞ;/kðvÞð0Þ (part of LH/RH / pair of

vectors) within the linear algebraic expression:

/lðtÞ �
X
jk

Tlk expðikkt=�hÞT�1
kj /jð0Þ: ð7bÞ

One further theoretic comment on the wider struc-

ture of Eq. (3) is called for here, as it highlights the

general importance of the role played by SIs, group
invariants and auxiliary terms within Liouville density

operator formalism. On adopting various reasonable

assumptions made in the work of Happer [14] or others

[15], cited by Sanctuary and Halstead [12], it follows

then that relaxation in these formalisms are governed

by various distinct T fk::g relaxation times, which

themselves arise from a block-diagonal structural form,

e.g. as in:

ð1=T f::gÞðvv0Þ dkk0dqq0 ; with argument f::g ¼ kq; or k:

ð8Þ
In addition under the extreme narrowing condition,

the R matrix reduces to a scalar quantity. From the

discussions in [12,14], it is noted especially that each

rank and auxiliary-labelled ð1=T fk:gÞðvv0Þ process is

completely distinct from any other rank/invariant-based

generalised relaxation time. Similar fvv0g auxiliary based
block-diagonal structures exist in a number of other

NMR, NQR contexts. Some further mention is given in

the appendix of precisely how the f/̂k
qðvÞgs behave, so as

to furnish a tractable analytic view of NMR cluster spin

dynamics.
4. Post-Weyl DR views of uniform spin ensemble TRI and
SIs of non-Abelian spin symmetries

The overall structure of DR uniform non-Abelian

multispin evolution (as a Liouville space spin dynamical

process), and its associated dual projective features, lie

well beyond those discussed (e.g.) in [10–12]. Apart from

their convenience in analytic work, tensorial Liouville

(rather than Hilbert, or non-tensorial product) space is
retained here for another reason. System invariants and

their properties derived via fjkqviig formalisms also

serve to define the precise nature of the dual carrier

(sub)spaces [9] implicit in quasiparticle mapping over

tensorial bases. Thus some of our initial concern will be

with the quantum physics of superbosons with its ex-

plicit invariant-labelled carrier space—cf. to that of

Hilbert quasiparticle dual maps over their simple H

boson carrier space. With their explicit use of (dual)

group invariants in retaining the simple reducibility (SR)

[9] of (Liouvillian) SUð2Þ �Sn dual carrier spaces ( ~H)

for uniform ½A�n spin systems, these mappings plays a

vital role in Liouville descriptions, cf. [12–15], which is
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quite specific to scalar evolution and certain simple re-
laxation processes. Clearly the dual tensorial, invariant-

related v auxiliary labels of ~H �
P

v
~Hv Liouvillian

carrier subspaces arise from a set of specific dual group

invariants and their (independent) jSI jð::Þ cardinalities. In
contrast to various typical EPR (paradox), or other

ambiguities associated with simple Hilbert space (e.g.,

with respect to distinctions between their local vs global

properties) which arise as a result of neglect in its
quantal structures of the role of system invariants (and

frequently even the presence of recoupling within

fjjm::ihjm::jg (product) basis sets), we stress here in

passing that the corresponding label-rich, dual group-

based, Liouvillian augmented abstract spin space is es-

sentially free from the majority of these difficulties. This

is a direct consequence of the v-defined SR approach

that we advocated a decade ago now [9]. From the
outset, the dual group superboson mapping consider-

ations (and its associated labels for the system invari-

ants) are incorporated into the spin-alone quantal

physics. Naturally, consideration of the role of SIs fol-

lows immediately, as being central (i.e., in the sense of

being both necessary and sufficient) so as to define the

structure of the carrier space and also the completeness

of its associated algebra. Various novel concepts arise
from detailed examinations of the nature of DR recou-

pling in quantum physics. Of these, the use of topolog-

ical modelling over lattice point sets is especially helpful

in describing non-Abelian automorphic NMR spin

symmetries. Indeed, the techniques adopted will be seen

here (i.e., in Section 5) as a rather convenient approach

to the inclusion of lattice point sets and other elements

of (polyhedral) topology into Sn combinatorics applied
to NMR. Our main focus in this research is on applying

the dual group-based concepts, inherent in DR, to

general (2n)-indexed uniform spin systems and their

NMR spin dynamics. In this regard, the ideas presented

here augment Corio�s strictly Abelian �SUð2Þ (1998)

approach [1]. The latter restricted SU(2) view (cf. DR

views) allows realisation of the SI cardinality of (2n+1),

odd spin systems directly from the jSI j2n of the preceding
(2n)-indexed (linear recoupled) case. However, the more

generalised (ð2nþ 1Þ > 7), non-Abelian uniform ½A�2nþ1,

½AX �2nþ1 DR-modelled systems differ strongly in this

regard. Accordingly, these more general SI models may

not be used to characterise the subsequent jSI jð2nþ1Þs for
odd DR uniform spin systems. Indeed on account of

certain topological geometric constraints and the lack of

any sequence of regular odd-indexed lattice point sets in
topology, how to treat ð2nþ 1ÞP 11-fold uniform spin

ensembles under DR remains essentially an open

question.

Before considering the general-(2n) physics of ½AX �2n
spin systems and their (dual group) scalar invariant

cardinality, jSI jð2nÞ, we first draw attention to the exis-

tence of a contrasting, limited-analytic approach, which
exists quite aside from the initial �SUð2Þ linear recou-
pling-based views, due to Corio [1]. It focuses on the

linear recoupled ðI � IÞ operator pairs of Weyl TRI for-

malisms [1,4] to yield a rth-fold bipartitite combinator-

ical (functional) view [16] in the form:

jSI jð2nÞ ¼ fðð2rÞ!Þ=ð2!::2!2!Þg=r!;with the inclusion of

r-fold 2! entries: ð9Þ

In physics applications, one clearly sets n ¼ r and

observes that the highest possible (linear recoupled)

analytic example is then ð2nÞ ¼ 6, with the jSI js re-

stricted to the following two cases: jSI jð4Þ ¼ ð4!=2!2!Þ=2!
and jSI jð6Þ ¼ ð6!=ð2!2!2!ÞÞ=3!, or 15. Thereafter, the in-

herent linearity-over-pairs condition implicit in Eq. (9)
inhibits further application of this formalism to uniform

multispin NMR systems, or analogous dual tensorial

sets. This occurs because, once there are more than 3

Weyl bracket pairs [1,4], the various (internally per-

muting) (spin operator)-pairs of the TRI model can no

longer exhibit pair indistinguishability, except for single

pair exchange.

In the context of Sn representations [17] and group
chain determinacy, two further points arise which are of

particular note. These naturally concern the distinction,

between the ð�SUð2ÞÞ2n approach to SIs under TRIs for

spin systems under a single (Abelian) group, and the

wider uniform sub-rank dual group views. The insightful

reader will notice that the main specific consequence of

replacing Weyl linear recoupling (or sampling) by DR

modelling is that the latter then allows for the use of
quite general polyhedral combinatorial techniques.

These clearly include the concept of FG projective ac-

tions over lattice point sets. In the context of regular

solid geometries, this powerful idea accords well with

both DR and the uniform nature of non-Abelian spin

ensembles in terms of their ki sub-ranks. The specific

nature of such mapping onto lattice point sets of regular

topological polyhedra is treated in Section 5 below.
Whilst the methods of induced symmetry (as they apply

to group representations) are well established [17–20],

the recent work of Bowden [19] is interesting for its use

of further induced symmetry techniques to demonstrate

the nature of certain simple unitary transformations.

Although restricted to date to (at most) the Abelian C6

cyclic group, this work certainly deserves wider recog-

nition. It represents a useful contribution towards re-
solving a fundamental question in applying group

theory to physics, namely how best to derive various

group-based analytic transformations. As yet, the

methods reported in [19] may not be applied to trans-

formations involving non-Abelian (automorphic spin)

symmetries, or to spin systems governed by multiple

invariants. From the established mathematical physics

literature [3], the derivation of analytic transformational
forms for these cases will recognised as largely an open
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question, a condition essentially caused by the presence
of multiple invariants. Indeed, the progress reported to

date in the treatment of multiple invariant-based sys-

tems and their jSI jð2nÞ descriptions, is possible only be-

cause a range of combinatorial, projective mapping and

group measure-based techniques have been utilised—as

indicated (e.g.) in Section 5. To fully appreciate

the specific nature of SI concepts—i.e., initially as

applied to the NMR spin physics of AA0XX 0 � ½AX �2;
AA0MM 0XX 0 � ½AMX �2 and then, beyond Corio�s work

[1], AA0A00XX 0X 00 � ½AX �3—one needs to demonstrate first

that one further significant group concept applies to

DR-based SIs, namely that they constitute valid group

measures. It is this Lie algebraic property which allows

the interrelated SIs (of Section 6.1) to have an equal

validity over isomorphic algebras [20], or direct product

algebras. The ability to extend mono-cluster SIs into the
realms of jSI jð2nÞð�Þ augmented SI calculations, which

involve practical non-Abelian NMR bicluster problems

is an important conceptual result. It arises exclusively

from the concept of SIs (or group invariants) being (Lie)

group measures. The importance of this group property

is demonstated by its further direct application to (e.g.)

the six spin ½AX �3 system, where the concept is essential

for the retention of analytic forms. These define the
subsystem�s state-space spectral invariants of this odd-

odd parity system, in accord with the work of Jones et al.

[2]. Despite the importance of Lie group measures, one

finds no mention of them either in [1], or in earlier NMR

reviews [5–7,12].

For completeness in regard to the DR aspects of this

work, the reader�s attention is drawn to the value of

other methods based on lattice point sets [21] (e.g.) from
our earlier discussion of the mathematical determinacy of

Sn # G group embeddings in NMR spin symmetry. In-

terest in these properties arose initially from our concern

with Cayley�s theorem and the latter�s relationship to

Voronoi duals [22]. Full mathematical determinacy

clearly implies that the complete set of all possible

Sn # G group embeddings [23] correspond to unique 1:1

correlations, i.e. bijective mappings. Hence, the mathe-
matical determinacy of FG (multipartite) embeddings

involving the SUðmÞ �Sn group irreps lies well beyond

the remit of standard SUð2Þ �Sn # G Cayley group-

embedding criteria. To date, the nature of these

additional multipartite-based embeddings may be ap-

proached only by demonstating that the individual

correlative maps, within the full set of pre-self associate

(SA) bijective mappings, are distinct [24] and encompass
all levels of multipartite subduction processes allowed

by the specific SUð2I þ 1Þ �Snð# GÞ group. Some fur-

ther appreciation of the nature of Sn combinatorial

algorithms [25] and their decompositional processes is

invaluable, in order to understand both induced sym-

metry [17–20] and certain concepts associated with

automorphic groups of NMR.
5. Group theoretic views of DR-based TRI in terms of
Lattice point sets and Sn polyhedral combinatorics

For the present topological-based purposes (re-

ferred to herein as polyhedral combinatorics [26]), it

suffices to draw on standard Sn theoretic views [27] of

the independence of variables within polynomial ex-

pressions. As an approach to physical modelling of

uniform spin problems, it naturally incorporates both
democratic sampling and DR recoupling into the

structure of the augmented TRI viewpoint. This is

studied here purely for its contribution to jSI jð2nÞ
cardinality. For initial convenience, we follow Weyl [4]

in restricting consideration (at least initially) to even-

indexed ensemble problems. Any polyhedral combi-

natorial approach is necessarily quite specific to

uniform spin ensembles and their analogous uniform
DTS. The cardinalities obtained arise within the

framework of a pair of separate submodels. Of these,

the first of these submodels give rise to the funda-

mental portion N
ð2nÞ
f (shown under an over-brace),

whereas the other type of contribution has a statistical

origin. This part incorporates the previously obtained

2i < 2n total jSI j2is, now as a sequence of total car-

dinalities which are referred to here as N
ð2iÞ
totals. The

development of the overall model is realised in a

specific general context of uniform ki tensorial spin

physics treated under DR. The viewpoint adopted is

based on regular topological lattice point sets. In ad-

dition, as the magnitude of ð2nÞ in this sequential

treatment becomes large, it is essential to restrict TRI

component SI-enumeration to ðI � IÞi0 ðI � IÞj0 ‘‘pair’’

exchanges with the exclusion of all quadra-partite (or
higher multiple embracketted) exchange processes.

This is accomplished by subtracting certain lower Sn0

model sum terms involving progressively higher partite

forms. As discussed elsewhere [28], the requisite cor-

rection terms involve sums over various Sn0 algebras

with (integer) n0 ¼ n=2; n=4; :: indices, now taken over

all suitable (equal/less than) specific multipartite

ðv½k�Þ2s.
We now give a few examples, Eqs. (10)–(14), over

the sequential set of SI-enumerations for the ½A�2n
uniform DR spin ensembles—noting the abbreviated

v½k� forms used here for brevity in discussing the 1n

based characters. In terms of these submodels, these

polyhedral democratic sampling/recoupling-based jSI j
calculations take the following forms for specific

cases:

jSI jð4Þ ¼ ðv½2�Þ2 þ ðv½11�Þ2
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

ðS2Þ þ f1g ¼ 3; ð10Þ

jSI jð6Þ ¼ ðv½3�Þ2 þ ðv½21�Þ2
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

ðS3Þ þ 3
3

1

� ��
þ 1

�
stat:w

¼ 15; ð11Þ



jSI jð8Þ ¼ ððv½4�Þ2 þ ðv½31�Þ2 þ ðv½22�Þ2ÞðS4Þ � ððv½2�Þ2 þ ðv½11�Þ2ÞðS2Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

þ 15
4

1

� ��
þ 3

4

2

� �
þ 1

�
stat:w

¼ 91; ð12Þ
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eventually one obtains the final 12-fold jSI j:

jSI jð12Þ ¼ N ð12Þ
f ðvia S6 : S3Þ

þ 603
6

1

� ��
þ 91

6

2

� �
=5

þ 15
6

3

� �
=2þ 3

6

4

� �
þ 1

�
stat:w

; ð13Þ

in which the various pre-combinatorial coefficient terms

of the statistical portion arise as self-consistant integer

terms. These integers are associated with the series of

N
ð2iÞ
total � jSI jð2iÞ terms for all 2i < 2n. Naturally, the latter

incorporates the prior fundamental terms, where each of

these is a sum of squares of bipartite characters on Sn

together with a subtractive term representing a sum of

squares of quadra- (or higher) partite characters on
some smaller group algebra(s), e.g., over all equal, or

less than (notionally) 4-partite ðv½k�Þ2s of S3 in the

present example. The purpose of this last subsum(s) acts

to exclude the Weyl non-allowed terms from contrib-

uting to the augmented TRI model. Hence for jSI jð2n¼12Þ
,

the fundamental model contributes:
N
ð12Þ
f ¼ fðv½6�Þ2 þ ðv½51�Þ2 þ ðv½42�Þ2 þ ðv½33�Þ2gðS6Þ � fðv½3�Þ2 þ ðv½21�Þ2 þ ðv½111�Þ2gðS3Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
¼ 132� 6; ð14Þ
with the first subset of group characters is clearly lim-

ited to bipartite forms. Hence the overall jSI jð12Þ ¼
N

ð12Þ
totalð¼ Nf þ f::gstatwÞ cardinality becomes:

jSI jð12Þ ¼ 126þ 4087 ¼ 4213: ð15Þ
Certain additional technical details concerning these

various ðv½k�1n Þ
2
sums for generally accessible N

ð2nÞ
f are

given elsewhere [28]. In addition, we note for clarity

that the Eq. immediately below Table 1 of [28a] should

have included all the higher (quadra-) partite forms,

except for the single 5-part ½15� irrep—one line of this

Eq. in the earlier publication was omitted in error. The

reader�s attention is drawn to a further aspect of the

denominators in the statistical submodel, Eq. (13)

above. These constitute self-consistent primes within
specific polyhedral topologies. They occur in these

combinatorical models of TRI essentially on account

of the intimate linkage between algebra and (topolog-

ical) geometry.

The regular topological geometries [29,30] and their

lattice point sets also highlight a further consequence of

the sequential enumeration process, as now viewed in

terms of the statistical submodel. Clearly by its nature,
this type of modelling, as it applies to higher general
(2n)- indexed uniform spin ensembles or analogous dual

tensorial sets, is constrained by its underlying regular

solid geometry. Thus, jSI jð2n>12Þ
total higher SI cardinalities

become (for the most part) inacessible, or indeterminate.

This occurs for a simple reason, namely the lack of

further components to the sequence of regular topolo-

gies used to model S2n group properties. One notes

from Eq. (13) that all of the preceeding N
ð2i<2nÞ
total terms

make a contribution to the statistical submodel. It is

only possible to circumvent this topological constraint

in a few instances, where (e.g.) it may be shown that the

specific highly degenerate S2n case corresponds to one

of the rare sporadic higher regular groups which are

interrelated by means of FG dual topology and iso-

morphic algebras. Providing the lower indexed isomor-

phic-related SI-cardinality is known, the higher 2n based
jSI jð2nÞ value may be obtained then simply by using the

� product group measure property. Otherwise, all fur-

ther jSI jð2n>12Þ values would be non-analytic, and thus

indeterminate. Despite this last constraint implicit in 3-

space, the conceptual value of FG topological duality is

invaluable in much of the subsequent discussion. This
occurs because FG duality provides the precise basis for

the central assertion of this work, that SIs as group in-

variants are group measures in a Lie algebraic sense and

provide the SI cardinalities of the bipartite NMR

clusters.
6. Liouvillian FG-projections: specific applications of
L-GM measures to DR uniform multipole NMR

6.1. Applications based on explicit invariance algebras

Prior to considering L-GMs and their direct product

(bicluster) augmentation, a brief reference is made to

other related projective techniques pertinent to Liou-

villian applications. As an illustration, the S3 uniform
spin-(1/2) is discussed, together a mention of uniform

spin-1 SUð3Þ �S3 NMR problems. In accordance the

earlier discussion, the initial focus here is on the con-

trasting dual projective view of non-Abelian (invariance)

algebras. By analogy with state space, the Liouvillian

irreps of the ½A�3ðS3Þ spin-(1/2) monocluster ensemble

arise directly from tr ~Xc:is (~vc:i, here for i ¼ E;C2;C3)

invariance terms, i.e., over the char set {64, 4, 16}. From
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use of the group algebra, one obtains (by analogy with
the SUð2Þ �S2 based Eqs. of Sanctuary and Temme

[11c]) the total system irreps as:

~C½3� ¼ f~vE þ 2~vC3
þ 3~vC2

g=6; ð16aÞ

~C½21� ¼ f2~vE � 2~vC3
g=6; ð16bÞ

~C½111� ¼ f~vE þ 2~vC3
� 3~vC2

g=6: ð16cÞ

From these Eqs., it is clear that total irrep spansP
~C ¼ f20; 20; 4gC0, where C0 refers to the {[3],[21],

[111]} unit column irrep set. The main conceptual value

of the latter is that it allows one to realise the 3-fold

spin-1/2 S3 adapted Liouvillian tensorial bases under

SUð2Þ �S3 dual automorphic NMR spin symmetry
simply by inspection. Thus, the set of dual tensorial

forms over various fk1k2k3g sets is as given (in context

of [31–33]) in Table 1. The value of this view of uni-

form spins is that it clearly retains the DR aspects

inherent in the dual group; in addition, it represents a

view analogous to an earlier classic scalar invariant

study, that due to L�evy–Leblond and L�evy–Nahas [3a]

based on uniform subranks over state space. The
Liouvillian DTS given in Table 1 extend the earlier

analogous S2 Liouville space tables [11a,11c,12a]. Ref.

[11a] also gave the state space matrix representations of

the earlier (Liouvillian) dual tensors. Unfortunately,

because of its focus on certain technical unitary

transform properties—including the use of CFP tech-

niques under a single SI-, the 1994 Liouville space

work of Listerud et al. [32] (in which the S3 structures
play the role of effective unitary labels) does not

mention the underlying theoretical physics associated

with DR [3], involving uniform ki tensorial subrank

labelled system under the dual group. The work re-

ported in [32] is only possible, because it is based on a

single SI. On setting aside the constants of motion, this

S3 group invariant clearly corresponds to the single

induced symmetry chain ½21� � ½2�, a fact omitted from
the original paper. The present use of projective tech-

niques and quasiparticle mapping under the full dual

group and its DR should yield a more physically in-

sightful approach, precisely because some effort has

been made here to put the problem into its wider

proper theoretical context [3,8,9].

The corresponding ½AX �3 bicluster problem is one of

some immediate NMR interest, because it is open to
further investigations on the basis of the bicluster (iso-

morphic) augmentation processes given in Eqs. (17–21)

below. In terms of projection over the invariance alge-

bra, it exhibits the Liouvillian irreps shown in Eq. (17b)

simply on the basis of the ð~viÞ2 numerical factors of the

direct product invariance set:

f~við�Þgover fi ¼ E;C3;C2g
� f4096; 16; 256g; over the ~vð�Þ algebra: ð17aÞ
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Naturally the corresponding irrep set follows directly
as:

~Cð�Þ ¼ f864; 1360; 561gC0; ð17bÞ
with the completeness of these inter-related spaces being

based on the respective ~vE : ð~vEÞ
2
values.

The equivalent uniform spin-one ½A�ðIi¼1Þ
3 ensemble,

whose state space irrep spans C ¼ f10; 8; 1g, follows

directly from the additional Liouvillian invariance al-
gebra. This spans:

ftr ~Xi : overi ¼ E;C3;C2gðIi¼1Þ � f729; 9; 81g: ð18aÞ
With C0 � A1;A2;E, the total irrep for the 3-fold

uniform spin-one system then becomes:

~CðIi¼1Þ ¼ f165; 240; 84gC0: ð18bÞ
In contrast to Table 1, the SUð3Þ �S3 dual tensorial

sets fT 6qðvÞ; . . . ; T 0ðv0Þg, encompass the following set of

auxiliary labels:

v; v0; ::: ¼ f222; 221; 220; 211; 210; 200; 111; 110; 100; 000g:
ð19Þ

These uniform threefold Ii ¼ 1 operator bases are still

of fairly modest dimensionality, 729. From their corre-

spondence to the classic 1965 work on three-spin sym-

metry of Jones et al. [2], one concludes that two further
distinct basis sets could well be of particular interest to

the NMR community, namely those for trideuto- 1,3,5-

trifluorobenzene, and its 2,4,6-trideutero-1,3,5-triazine

analogue. The former is clearly a CðIi¼1ÞðS3Þ � CðI 0i¼

ð1=2ÞÞðS3Þ spin problem. The pure bis 3-fold spin-one

spin system exhibits an interesting distinct feature in

being of even-even parity, in contrast to the odd-odd

parities of the original pure bis 3-fold spin-1/2 system
of [2]. On utilising the respective trf ~Xi : E;C3;C2g in-

variance subsets for these further bipartite cluster spin

systems, one obtains the following respective invari-

ance sets: trf ~Xið�Þg � f46656; 36; 1296g; else trf ~Xið�ÞIi;
I 0i ¼ 1g � f531441; 81; 6561g. These in turn defines the

corresponding overall irreps. Hence,

~Cð�ÞðIi¼1:I 0i¼ð1=2ÞÞ � f8436; 15540; 7305gC0; ð20Þ
defines the overall irrep over Liouville space of the
mixed bipartite system, in contrast to the vEð�Þ ¼
531241-dimensioned, bis pure spin-one (bi)cluster sys-

tem. The irreps of the latter span:

~Cð�ÞðIi ;I
0
i¼1Þ � f91881; 177120; 85320gC0; ð21Þ

in agreement with the stated dimensionality.

6.2. DR and LGM-defined SIs for bicluster NMR systems

On invoking the Lie algebra concept that SI invari-

ants constitute actual group measures, further induced

symmetry or projective techniques become available for

use in auxiliary label (or recoupling) aspects of NMR
spin physics. In a sense, these techniques complement
those based on either invariance algebra or dual quasi-

particle mapping. However, there are certain important

differences from the latter, since the jSI js represent re-

coupling-based (not invariance-based) properties. As

noted in the context of graph invariant schemes [12] and

elsewhere, recoupling over fkigs (whether for linear or

DR forms) simply mirrors the analogous forms over

state space fjigs, without there being any (internal) map-
based augmentation implied between the corresponding

state and Liouville space recouplings. Induced symmetry

arguments are invaluable in the context of invariants

and their cardinality. Hence it follows that the four and

fivefold spin invariants in either space are governed by

their inherent subduced symmetry chain sets. To im-

plement this observation it is first necessary to omit the

chain derived from the constant(s)-of-motion from
consideration. For the above monocluster spin systems,

the group invariants are represented by (otherwise v; v0v00

labelled) subsets of irrep chains which span:

fSI ;SI 0;SI 00gðS4Þ�f½31� � ½3� � ½2�g;f½31�
� ½21��½2�g;f½22��½21��½2�g; ð22Þ

and the six pre-SA/SA S5 component subsets:

f½41� � ½31� � ½21� � ½2�g; f½41� � ½31� � ½3�
� ½2�g; f41 � ½4� � ½3� � ½2�g; ð23Þ

f½32� � ½31� � ½3� � ½2�g; f½32� � ½31� � ½21�
� ½2�g; f½32� � ½22� � ½21� � ½2�g; ð24Þ

respectively. One has necessarily excluded the initial
tripartite SA-irrep based chain-sequence here; clearly,

this is justified on account of the SIs or group invariants

being exclusively SUð2Þ �Sn properties.

Further discussion of enhanced cardinality here refers

specifically to the external type inner product process

implicit in L-GM properties. Practical NMR applica-

tions of the latter are as part of bicluster formation—

rather than to any internal mapping property of more
theoretical interest. On utilising the known SI-cardi-

nalities for any of the simple spin ensembles, the re-

sponding overall bis system jSI jðn
0:�Þ cardinality follows

directly, with the actual invariants being represented (as

below) as suitable products of chain sequences. Hence

for the n0-indexed systems ½AX �2; ½AX �3, and for the

specific ½AX �4ðS4 # D2Þ case, (as one subset of a more

general ½AX �4ðS4Þ NMR system [11b]), one finds that
the SI-cardinalities over the isomorphic direct product

algebras (themselves based on unit (component) jSI jðn
0Þ)

all correspond to the L-GM algebra:

fjSI jðn
0Þ � jSI jðn

0ÞgðG� GÞ ¼ jSI jðn
0 :�Þ ¼ 1: ð25Þ

Indeed, the central logic of this relationship taken in

the context of earlier theoretical work [3b] clearly defines

the full extent of monoinvariant-derived augmented bis
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cluster spin systems in NMR. It is interesting to note
that this includes the bis 3-fold spin system, discussed by

Jones et al. [2] in the mid-1960s and, in a Liouville space

context, by Listerud et al. [32] more recently. In contrast

to the three examples above, the bis 4-, 6- and 10-fold

½AX �2n spin systems (e.g.) differ, since each represents

distinct monocluster cardinalities for NMR spin prob-

lems which are defined by multiple invariants. On the

basis of Galbraith�s mathematical physics conclusions
[3b] concerned with the group theoretic nature of DR,

all these higher-indexed monocluster NMR systems all

lack conventional closed analytic descriptions, compa-

rable to [11a,32]. Since such multiple invariant con-

straints to non-Abelian systems have been well

established [3] from research of the period 1965–1972, in

the following paragraph we shall confine ourselves to a

brief review of applications of the LGM concepts in
obtaining augmented jSI jðn

0:�Þs for bipartite ½AX �n spin

systems.

For each of the three specific monoclusters mentioned

above, augmentation to practical bicluster systems in-

volves analogous logic in deriving the explicit jSI jðn
0:�Þ

cardinalities over isomorphic direct product algebras,

based on this L-GM concept. As an example of L-GM

based mapping for a system defined by multiple group
invariants, we consider the formation of the higher

spin symmetry ½AX �4 system. The resulting bipar-

tite spin cluster system is defined by the invariant

cardinality:

jSI jð4Þ � jSI jð4Þ ¼ jSI jð4:�Þ ¼ 9: ð26Þ
This is seen to arise from the 3-fold initial mono-

cluster cardinality. Using all possible v; v0; v00 chain se-
quences from Eq. (22) (et seq.) above, generates specific

pairings (with ordering retained), which now represent

the new set of invariants for the augmented spin system.

Thus, the invariants of ½AX �4 are represented by:

fvv; vv0; vv00; v0v; v0v0; v0v00; v00v; v00v0; v00v00g: ð27Þ
Similarly, the SI-cardinality associated with ½AX �6 is

defined by:

jSI jð6Þ � jSI jð6Þ ¼ jSI jð6:�Þ ¼ 15� 15 ¼ 225; ð28Þ
Clearly both cases represent direct products over

suitable isomorphic algebras being used to define the

cardinality associated with mono ! bi-partite cluster

mapping. Analogous detailed consideration of the (or-

dered) induced chain sequence products as useful rep-

resentations of the bicluster invariants is not given here
for brevity. Finally, the corresponding overall bis ten-

fold spin system cardinality, as jSI jðn
0¼10:�Þ, exhibits a

resultant magnitude for the number of these inde-

pendent SIs of 363,609. This arises directly from

jSI jð10Þ ¼ 603 being the number of invariants defining

the monocluster. Because of the mathematical physics

property of analytic indeterminacy inherent in all these
multiple SI-based spin systems, little if any further
progress would seem possible in describing the spin

dynamics of these bipartite system, unless of course the

analysis incorporated the invariants in such a way that

distinct subsectors could be associated with each in-

variant. Whilst this insight is novel in the present con-

text, it is somewhat analogous to the multi-structured

physics of relaxation, as obtained from auxiliary labelled

intensive tensorial theories of multi-mode relaxation,
e.g., in work due to Happer [14] dating from the 1970s.

Since the use of jSI jðn
0:�Þ terms (and induced symmetry

sequence products) arises from L-GM defined DR re-

coupling-based properties, specific to (dominant intra

JAA0 ; JXX 0 ; ::-based) uniform spin systems, any analogue

to multi-mode type analysis is not a direct group theo-

retic simplification, i.e., in the sense intended by Gal-

braith [3b]. As far as the present author is aware, no
actual multimode (non-relaxation) analytic spin dy-

namics calculation, or analogous transformation, have

appeared to date. The form of such analyses for some

suitable (P 4; 5) spin systems (i.e., beyond the conven-

tional mono-SI work given in [32]) in principle repre-

sents an interesting non-trivial open question.
7. Discussion and general conclusions

Experimental multiquantum studies for irrep-selec-

tive NMR evolution were reported by Avent [34] in the

mid-1980s. However, they were restricted to discrimi-

nation between the possible distinct irreps of the single

invariant based A½B�3 spin system which did not involve

(multiple) irreps of high degeneracy, such as those dis-
cussed in the Sec. above. For conceptual completeness

here, as well as for its clarity in the context of Corio�s
recent discussion [1] in terms of orthogonal symmetries,

it is important to stress that any method of obtaining

SIs, which are ultimately based on SO(3) homomorphic

mapping onto SU(2), is constrained. In principle, it is

simply not applicable to NMR spin systems involving

high degeneracy, such as those exhibited by uniform
(2n)-fold ½A�2n; ½AX �2n82nP ð4Þ5; 6 uniform spin sys-

tems. For these specialised uniform ji=ki sub-rank set

systems, only DR dual group models using topological-

based combinatorial methods are viable. As shown in

Section 5, such models arise via the (recursive) Landau-

Lifschitz [27] generalised approach to the (properly in-

dependent) variables of polynomials and so provide a

basis for determining the fundamental components,
N

ð2nÞ
f under DR. The N

ð2i<2nÞ
total ¼ jSI jð2iÞ series of compo-

nents (the right-hand numerical terms contributing to

the statistical submodels in Eqs. (11)–(13)), plays an

important role in modelling, because they limit the ex-

tent of the DR sequential statistical submodel. This ef-

fect occurs for geometric reasons arising from the

known limits to regular topological polyhedra. Indeed
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despite the known existence of higher stellate (non-
convex) Ih 3-space forms, the maximal regular convex

hulls (solids) known are the icosahedron and its FG

dual; for this reason alone, the extant of the sequential

even series mentioned above is limited. Since further

statistical submodels, beyond those given in Eqs. (10)–

(13), are undefined, equally the polyhedral combinato-

rial modelling over lattice point sets is interrupted also

at the point, 2nP 14, for lack of any viable sequential
statistical contribution. Little further progress is possi-

ble in defining either further monocluster SIs, or the

jSI jð2nÞð�Þ invariants for higher ½AX �2n (uniform) NMR

systems, or their associated dual tensorial sets. One

uniform multispin monocluster exception is predicted on

the strength of recognising the central role played by FG

duality in the context of group measures over isomor-

phic algebras, a concept reported in Section 6.2 above.
On topological grounds, it is clear that even where fur-

ther possibly quasiregular polyhedra actually occur be-

yond the ð2nÞ ¼ 12-indexed SI example treated here,

they are of rather sporadic occurrence. In addition their

treatment would require the presence of a definite FG-

topological duality linkage to furnish any further jSI jð2nÞ
value for a still higher uniform spin ensembles. Hence,

treatment of a new monocluster ensemble system in
terms of its independent jSI jð2nÞ cardinality, as obtained
via a higher sporadic regular topology and isomorphic

algebra, is the subject of separate applied mathematical

focussed work [35]. Conceptually it is of interest to note

here exactly how originally one recognised that SIs

(group invariants) are indeed Lie algebraic group

measures [20].

For historical context, we stress that no mention of
the concept of group measures, or of the need to dis-

tinguish between multiplicity-free and non-Abelian spin

systems, was made in Corio�s original discussion [1] of

ð�SUð2ÞÞ2n based SI cardinality for Abelian spin sym-

metries. Corio also leaves a further essential question

unresolved. This concerns the nature of more general

(2n)-bis system SI cardinalities. Because these properties

generally define tensorial completeness, they play a
specific essential role within the quantal physics of spin

dynamics of uniform non-Abelian bipartite spin en-

sembles. Hence the lack in [1] of any statement on the

specific role of SIs as group measures (acting over iso-

morphic direct product algebras) is a serious omission.

This additional Lie-algebraic concept had to await rec-

ognition of a more explicit formalism in the Russian

theoretical physics literature [20], before it could be in-
troduced into descriptions [28] of NMR spin symmetry

[11,31], as a proof that SIs are group measures. This

viewpoint essentially rests on the role of topological FG

duals as seen in a specific comparison of the ð2nÞ ¼ 6; 8-
based ½A�2n system jSI jð2nÞ values. The central role here in
NMR of SIs as group measures (as well as important

distinctions between the Abelian, or non-uniform,
ð�SUð2ÞÞð2nÞ based (degeneracy-free) examples [1] and
the higher (2n)-based uniform fji; kig DR recoupled spin

systems) is quite fundamental to the modelling reported

in this work. Indeed, the DR-derived jSI jð::Þ cardinalities
determine the structure and completeness of uniform,

higher (2n) based dual tensorial sets, also. No descrip-

tion of them could be complete without a precise

knowledge of the independent SI cardinalities and

bipartite mapping. Even discussions of the nature of
non-multiplicity-free NMR spin systems, derived from

simpler uniform spin ensembles, benefit from the use of

a tensorial operator-basis approach. This comes about

because a knowledge of the SIs, as part of the auxiliary

labelling, is essential to an understanding of the reten-

tion of SR in superboson quasiparticle mapping over

carrier spaces [9]. Hence, it is the physical attributes of

the auxiliary labelling that yields insightful in the anal-
ysis of coherence development. In turn, this gives a

greater appreciation of the structure of NMR ensemble-

based spin systems, than is possible in state space

product representation formalisms, where the SIs lack

such an explicit quantum role. A penultimate additional

theoretical comment is timely before concluding this

work, namely that the technique of utilising the cardi-

nality of ð2nþ 1Þ odd-indexed spin systems of the pre-
ceding linearly recoupled even jSI jð2nÞ result by factor of

2 (as advocated by Corio [1] and Weyl [4]) is essentially

restricted to linearly recoupled ðI � IÞðI � IÞ (pair) TRI

theory of low-indexed Abelian abstract spin symmetries.

Since regular odd indexed vertix point set-based topol-

ogies are especially scarce geometric entities, any further

consideration of general SI cardinality for odd

ð2nþ 1ÞP 11 indexed spin ensembles (or of odd uni-
form dual tensors) under DR for now remains an open

question. Finally as a modern mathematical view of

group invariants—half a centuary beyond Weyl�s origi-

nal Sn;GLn group duality-based monograph on group

invariants-, we refer the interested reader to a recent

comprehensive text by Goodman and Wallish [36].
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Appendix. Appendix notes

To clarify distinctions between ½AX �n NMR systems

governed by high permutational, dominant intra-clus-

ter JAA0 ; JXX 0 -based zeroth order Liouvillians
^̂
L

ð0Þ ¼
½Ĥð0Þ; �� and the analogous bipartite AA0A00::XX 0X 00::
isochronous spin systems, in which the various inter-

and intra-cluster J interactions of
^̂
L

ð0Þ
(s) introduce

(some specific) JAX � JAA, or JXX , (or else yielding JAX s
of comparable magnitude to either JAA0 ; orJXX 0 ), it is

instructive to compare a pre-1990 work of ours [11a]

with Sanctuary�s 1985 treatment on the role of cross-

product polarisation in AX spin system [10b]. In the

dominant JAA0 ½A�2 case, the eigenvalues inherent in the

rotating-frame description of the spin dynamical are

associated with null value entries throughout the

f:; :; g½~2� salient, which is derived from /k
qðv : ½~2�Þs. The

remaining eigenvalues are associated with the various

½~12� polarisations and in contrast take the values, 	JAA0 .

From Eqs. (18–28) of [11a], one concludes that the ½~2�
sector rotating frame coherences are stationary local

properties, in the sense that:

/̂2
qð11; ½~2�Þ½t� ¼ /2

qð11; ½~2�Þ½0�; for q ¼ 	2;	1; and

ðA:1Þ

/̂1
	ð½~2�Þ½t� ¼ /1

	ð½~2�Þ½0�; ðA:2Þ
with the expression /̂k

qð::Þ ¼ expð�iqwtÞ/k
qð::Þ½t� defining

the rotating frame. The remaining /̂1
	ð½12�Þ; /̂

1
	ð11Þs are

coupled by JAA0 but remain unobservable, simply be-

cause /1
qð½12�Þ½0� can not be created by any conven-

tional rf-pulse sequence. The contrasting responses of

the AX-based dipolar coherences arise from the exis-

tence of four distinct eigenvalues and a overall solution

of the QL Eq. in a form equivalent to Eq. (7b) above.

Specific matrix elements may be found in Table 5 of
[10b]. The now distinct /̂1

qðvÞ s of AX case with v ¼ 10,

or 01 are shown to be coupled by the (symmetry

breaking) cross-product polarisation, /1
qð11Þ. Hence,

only the /̂2
	2ð11Þ quadrupolar coherences, which may

be observed indirectly via 2D NMR sequences, are

stationary rotating frame entities for the AX spin dy-

namics model, with solutions:

/̂2
	2ð11Þ½t� ¼ /2

	2½0�: ðA:3Þ
Hence, the two distinct

^̂
L

ð0Þ
-based spin systems ex-

hibit strong contrasts in their analytic spin dynamics.

These observations also highlight general distinctions

between the zeroth order aspects of wider symmetry-
based proper cluster spin systems (i.e., corresponding to
the ½A�2 monopartite spin system above), as compared to

the various isochronous (or related) NMR systems, in

which one or other of the JAX intercluster Lð0Þ interac-
tions are either dominant, or else comparable to one of

the JAA0 ; JXX 0s. The 1965 work of Jones et al. [2] has also

stresses the additional value of parity in isochronous

systems, with odd-odd parity allowing the different in-

tracluster JAA0 ; JXX 0s to be observed independently. In
addition to recalling frequently overlooked formal dis-

tinctions, the above views present the topic in a modern

NMR context, via contrasting tensorial model spin

dynamics.

On turning to the question of role of invariants,

one notes that it was precisely the concept of topo-

logical FG duality, which provided the original proof

(Eq. (7.1) of [35]) that SIs are (Lie algebraic) group
measures [20] over isomorphic group algebras. Only

by examining this point in the specific context of oc-

tahedral/cubic topological duality does one recognise

SIs as recoupling based group measures with practical

impact on bicluster NMR and their independent

jSI jð2nÞð�Þs. Para II of Section 7 comments further on

the role of FG duality in SI modelling. Additionally,

in the topological context of 13C60 or other regular
fullerene-based spin systems, one notes that no cor-

relation exists between truncated higher topological

forms and their related simple topologies This has a

physical consequence for our knowledge of precise

jSI jð2nÞ cardinalities of various multi-invariant DR-

based higher uniform spin ensembles. Illustrations of

the known topological fact that there is no higher

regular simple convex hull (geometric solid) beyond
the dodecahedron is available. Beyond the truncated

solids (mentioned above) with their mixed sets of

polygonial faces, this includes (e.g.) the encapped cube

derived by imposing the elements of its dual onto a

cube. It will be readily seen that the are two quite

distinct sets of vertix points now (six of 34 (i.e., a

vertix of geometric solid included within 4 distinct 3-

gons) from the encapped extremities and eight now of
36 type). Hence the solid structure is definitely not a

regular polyhedra [30,31], as one would require in

order to treat ½A�n uniform spin ensembles. Similar

arguments show that the encapped dodecahedron with

its 32 vertix points is not a regular convex hull [30] in

the sense used here. Refs. [10,12] should consulted for

details of the transforms between the less physical

product bases (as shift bases) and tensorial basis sets,
or between products of tensor bases and full ½AX �2n
tensorial bases, both of which involve suitable 3j co-

efficient sums. Finally, the evaluation of Liouville

operator matrix elements (constrained by commutator

relationships which occur within the tensorial basis) is

set out in Eq. (229) of the 1991 Sanctuary and Hal-

stead review [12].



132 Communication / Journal of Magnetic Resonance 167 (2004) 119–132
References

[1] P.L. Corio, J. Magn. Reson. 134 (1998) 131–137.

[2] R.G. Jones, R.C. Hirst, H.J. Bernstein, Canad. J. Chem. 43 (1965)

683–690.

[3] (a) J.M. L�evy-Leblond, M. L�evy-Nahas, J. Math. Phys. 6 (1965)

1372–1380;

(b)(see cf. in) H.W. Galbraith, J. Math. Phys. 12 (1971) 782–794,

2380–2390.

[4] H. Weyl, Representations and Invariants of Classic Groups,

Princeton Press, 1946.

[5] K. Balasubramanian, J. Chem. Phys. 78 (1983) 6358–6369, pp.

6369–6376.

[6] R.G. Jones, Princ. Progr. NMR 1 (1967) 97–172.

[7] P.L. Corio, The Structure of High-resolution NMR, Academic,

New York, 1966.

[8] L.C. Biedenharn, J.D. Louck, Permutation Group in Physics and

Chemistry, Springer, Berlin, 1979.

[9] F.P. Temme, Physica A 198 (1993) 245–261.

[10] (a) B.C. Sanctuary, J. Magn. Reson. 61 (1986) 116–124;

(b) B.C. Sanctuary, Mol. Phys. 55 (1985) 1017–1031;

(c)(also) B.C. Sanctuary, J. Chem. Phys. 64 (1976) 4352–4361.

[11] (a) F.P. Temme, J. Magn. Reson. 83 (1989) 383–387;

(b) F.P. Temme, Chem. Phys. 32 (1989) 9–32;

(c) B.C. Sanctuary, F.P. Temme, Mol. Phys. 55 (1985) 1049–1062,

58 (1986) 659.

[12] (a) B.C. Sanctuary, T.K. Halstead, Adv. Opt. NMR Reson. 15

(1991) 97–161;

G. Campoleti, B.C. Sanctuary, Canad. J. Chem. 65 (1987) 1746.

[13] M. Atiyah, P.M. Sutcliffe, Proc. Roy. Soc.- Lond. A 458 (2002)

1089–1115.

[14] W. Happer, Phys. Rev B:[3] 1 (1970) 2203–2212.

[15] A. Bain, R.M. Lynden-Bell, Mol. Phys. 30 (1975) 325–356;

(also) B. Gestblom, O. Hartmann, J.M. Anderson, J. Magn.

Reson. 5 (1971) 174–179.

[16] D.A. Marcus, Combinatorics a problem-oriented approach, Am.

Math. Soc., Rhode Is. (1998).
[17] W. Ledermann, Group Characters, second ed., Cambridge Uni-

versity Press, Cambridge, 1987.

[18] M. Quack, Mol. Phys. 34 (1977) 477–488.

[19] G.J. Bowden, J. Math. Chem. 131 (2002) 363–370.

[20] A.A. Kirillov, Elements of Group Representation Theory,

[Transl�d: E. Hewitt], Springer, Berlin, 1975, see pps: 32, 38, 83.

[21] P. Erd€os, P.M. Gr€uber, J. Hammer, Lattice Points, Longman-Sci,

Harlow, 1989.

[22] I.Ya. Akimova, Engin. Kybernet. 22 (1985) 6–12.

[23] F.P. Temme, J. Mol. Struct. Theochem. 578 (2000) 145–157;

Int. J. Quantum Chem. 78 (2000) 71–82.

[24] F.P. Temme, Eurphys J. B 11 (1999) 177–185.

[25] B.E. Sagan, Symmetric Group: Its Representations, Combinato-

rial Algorithms and Symmetric Functions, Wadsworth Pacific

Gr.-CA. (1991); A. Kerber, A. Kohnert, A. Lascoux, J. Symb.

Comput. 3 (1993) 195–204; Symmetrica Pkg., loc.cit.

[26] A. Schrijver, Encyclopedia of Combinatorics, MIT Press/Elsevier,

Amsterdam, 2000 [Polyhedral Combinatorics (Chapter 30)].

[27] L.D. Landau, E.M. Lifschitz, Non-relativistic Quantum Mechan-

ics, second ed., Pergamon, Oxford, p. 218.

[28] (a) F.P. Temme, J. Math. Chem., 31 (2002) 281–312;

F.P. Temme, J. Math. Chem., 33 (2004) (Addenda to [28a]);

F.P. Temme, J. Math. Chem., 27 (2000) 111–130; 131–154;

F.P. Temme, Int. J. Quantum Chem., 90 (2002) 155–165, et loc.

cit.

[29] R. Maeder, Math. J. 3 (1993) 48, & Illustr. Chart Supplement

thereto.

[30] Z. Harv�el, Geom. Dedicata 47 (1993) 57.

[31] F.P. Temme, Z. Phys. B 88 (1991) 83–92.

[32] J. Listerud, S.J. Glaser, J.P. Drobny, Mol. Phys. 78 (1993) 629–

658.

[33] R.P. Feynmann, Theory of Fundamental Processes, W.A. Benja-

min, Reading-Mass, 1962, esp. Appendix Tables.

[34] A.G. Avent, J. Magn. Reson. 53 (1984) 513–518.

[35] F.P. Temme, AXX (2004) xx (to appear).

[36] R. Goodman, N.R. Wallish, Representations and Invariants of

Classic Groups, Cambridge University Press, Cambridge, 1998.


	Time-reversal-based SU(2)timesSn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [AX]n NMR spin systems, as abstract Sn&sup;Sn-1../Un&sup;Un-1.. chain networks
	Introduction
	Initial context
	Multipole density operator Liouville formalisms
	Post-Weyl DR views of uniform spin ensemble TRI and SIs of non-Abelian spin symmetries
	Group theoretic views of DR-based TRI in terms of Lattice point sets and Sn polyhedral combinatorics
	Liouvillian FG-projections: specific applications of L-GM measures to DR uniform multipole NMR
	Applications based on explicit invariance algebras
	DR and LGM-defined SIs for bicluster NMR systems

	Discussion and general conclusions
	Dedication and acknowledgement
	Acknowledgements
	Appendix notes
	References


